绘制银河系

盖亚宇宙飞船将很快开始绘制银河系恒星的三维位置
2013年12月03日

采访

Gerry Gilmore,剑桥天文研究所

分享

格里-你好。我是来自剑桥的Gerry。我是为数不多的天文学家之一,我真正尝试去理解那些你可以在晚上出去看的东西。我的同事中没有多少人这样做,大多数时候,我也没有。但特别的是,我们现在有一个巨大的项目正在结出硕果。我们正试图了解银河系的起源。所以,这是最基本的问题,你至少可以在外面回答或问。我们所知道的每一种文化都有自己的答案,叫做神话或神或任何你喜欢的名字,如何打破“先有什么”的问题。我们来了,在我们之前有什么?所以,挑战是说,仰望天空,你说,我能看到我能看到的。 But what's really out there? What's the Milky Way really made of? How big is it? How fast is it moving? What is there out there that's important that doesn't shine, that we can see? So, how much does it weigh? A few basic little home-grown questions like, where did the oxygen that you are breathing right now get created and how did it get here from wherever it was formed? How is the stuff you're made of got to be around so that you can be made of it?

克里斯-你能给我们一些关于银河系的数据吗?换句话说,我们在哪里,它有多大,它可能有多少行星和恒星,诸如此类的事情。

格里:嗯,这就是我要谈的盖亚项目要回答的问题,但我们目前的大致数字是,银河系大约由1000亿颗恒星组成,其中太阳是很典型的。太阳距离银河系中心大约有3万光年而银河系的外围也就是我们现在所说的银河系距离中心大约有几十万光年。所以,整个画面显示出3到40万光年的跨度。这是件大事。它是由1亿颗恒星组成的,但主要是由暗物质组成的,大约90%的太阳是由与你不同的物质组成的。这是一种神秘的东西,我们除了能称它的重量外,对它一无所知。我们知道,像太阳这样的恒星是由和你一样的化学物质组成的,这是很典型的。所以,大多数恒星和行星都是由和你一样的化学物质组成的。但有些部分是由完全不同的物质构成的,它们是大爆炸早期遗留下来的原始物质。这也告诉了我们银河系的年龄。 The whole universe is about 13 billion years old and it's pretty clear that the first structures that eventually came to form what we now call the Milky Way were already in place a few hundred million years after the very beginnings of the universe. So of course, it's even older than that. The hydrogen in the water that you're made of was created in the Big Bang. And so, in a very real sense, you are a fossil of the Big Bang itself.

克里斯:你认为自来水公司会介入并向我们收费吗?账单在上涨!那么,有一个问题。如果所有这些物质都在这个星系中聚合成恒星,为什么它们会分散成独立的小恒星呢?为什么不形成一个大质量的物质团呢?

格里:嗯,那是因为宇宙其实很大。天文学的挑战并不是阻止所有东西形成一个巨大的东西也就是一个巨大的黑洞。事实恰恰相反。这是如何让它足够接近实际上有星星的地方,这样你就能在天空中看到它们。在非常早期的宇宙中,整个宇宙是非常均匀的,但由于大爆炸,它很嘈杂。声波,真的有声波。真的有一声巨响。声波推动周围的物质,让它们聚集在一起。所以,古老的引力,整个宇宙的主导力量最终将物质聚集在一起。但是普通的物质,普通的气体等等不喜欢待在小的地方。 It's really hard for it to cool down and collapse into a small place and then form stars. So, to do that, first of all, you need chemistry to cool the matter. So, you get this chicken and egg problem. If I don't have any chemistry to form the first stars, how do I form the first stars? That's a question that we're thinking about right now. But then other things do form stars, but the thing that stops it all going crazy is again, the dark matter. The dark matter dominates the weight and the mass of everything. And there's so much of it that all the stuff in the universe is whizzing around quite fast. It's whizzing around so fast that it never gets a chance to accumulate into very large pieces. Largely because one side of a large blob is moving quite fast relative to the other side and it just shears itself apart. So, if I try to put all Milky Way together into a single thing, it would rapidly fragment again into what we see.

Chris -一位物理学家对我说,暗物质被发明的唯一原因就是你可以在它前面加上“黑暗”这个词。它听起来很性感,你会得到更多的资助。但我们就是这样。

Gerry -暗能量确实如此。但暗物质就不是这样了。

克里斯-告诉我们盖亚计划到底是什么。你是如何画出银河系并理解它的呢?

盖亚是12月19日早上9点15分发射的卫星的名字。你会在那天的新闻里读到希望这是我生命中25年的巨大成功和胜利。

克里斯:我们注意到我们是在盖亚发射之前录制节目的,以防万一,否则我们就不能让格里上节目了,因为他会一直在谈论那颗不存在的卫星。

格里-否则,你会听到啜泣声,但会起作用的。这实际上是一项惊人的技术——让你大吃一惊。但盖亚真正要做的是对银河系进行首次人口普查。目前,我们还做不到。我们可以给天空拍照,数星星,得到这个1000亿的数字。肉眼可以看到大约6000颗,所以这只是实际数量的一小部分。但我们不知道他们在哪。我们不知道他们离我们多远。天文学中最难的事是测量距离。只有一种方法可以做到这一点那就是使用一种叫做视差的三角测量技术这是一个你们所有听众现在都应该做的实验。 Hold your arm out in front of your face. Come on audience, hold your arm out. That's it. Now close one eye and then close the other eye and you'll see your thumb. Hold your thumb still and you'll see it apparently jumping from side to side. Now that's parallax and that tells you- the amount it moves, tells you how far, how long your arm. All animals have evolved that way so you can find out where the food is, so you can go and catch it. And that's the same trick we use in astronomy except in astronomy, the distances are rather larger than they are to your nearest dinner. And so, we need to measure much smaller shifts and that's where we need fancy technology. And in fact, the scale is such that the distances in the universe are so large that Gaia measures angles who has silly names - nanoradians and things that only a nerd would understand. But to give you a useful analogy, the accuracy with which Gaia will measure the positions of each star is equivalent to locating a shirt button on the moon. So, that's equivalent to measuring the thickness of a human hair when you are sitting here in Cambridge and the hair is on somebody's head in Paris. So, that's the level of precision. It just blows your socks off, doesn't it? I mean, it's awesome, this thing. And Gaia is going to do that for a billion stars. And so, it's going to provide this 3D map of where these billion stars are. But it's going to do even better than that because we're going to carry on doing that for 5 or 6 years. So, we'll see how they're all moving. So, we not only get a 3D map of where stuff is now, we'll also know how it's moving, so we'll know where it's going to be in the future and we'll know where it came from in the past. And we're going to do even more than that. Why stop there? So, while we're at it, we're going to actually deduce the properties of those stars and work out what chemical elements they're made of. So, we'll be able to track back the history of the oxygen, the carbon, the nitrogen that you're made of and find out what stars made this stuff and when and where, and how it got to be in our bit of the universe, and how the Milky Way is still forming today. The Milky Way is still growing. It's like some people in this room. Most of us are actually probably either growing or putting on weight. And the Milky Way does it too. It's getting heavier every day. It's gobbling up its neighbours, which I hope you're not doing! And so, it gets bigger and heavier, and Gaia will find these. No matter how cleverly you try and eat your neighbour, you'll always leave a few crumbs around. Gaia will do the same thing. At least it'll find the crumbs and the debris of these little satellites that have been gobbled up. And so, we'll be able to count the things that used to be alive and have now been gobbled and work out just when and where the Milky Way put itself together.

Chris -我们来回答一些问题。所以,好好想想,但与此同时,金妮,你的邮箱里有什么?

Ginny:我收到了Patrick Monde的一封邮件,他说他听说有一颗行星被创造性地命名为行星X,正在接近地球,他想知道如果有一颗新行星进入了我们的太阳系,它会对我们有什么影响?

格里:人们花了很长时间寻找行星X,然后他们最终找到了冥王星,并意识到他们找到了我们刚才听到的冥王星X。在遥远的太阳系外,还会有更多类似冥王星的天体。我们找到它们的方法和找到其他东西的方法一样。而是通过称重。我们找到看不见的东西的唯一方法就是称重。所以你会说,如果我看不见,我怎么能称一个东西的重量呢?好吧,你没有说,“让我告诉你关于暗物质的事”,但这是另一个问题。但X行星的关键是有很多很多的小行星。事实上,盖亚将非常仔细地测量大约4000万颗小行星绕太阳运行的轨道。其中一些会持续很长时间。 And so, if there is an extra planet out there then Gaia will notice that all the asteroids coming from that direction in the sky have slightly funny orbits compared to the ones coming from other directions in the sky. And so, by looking for patterns in the asteroid orbits, we'll be able to tell you what is there or equally, what is not there.

克里斯-那当然是宇航员穿裤子的方式,小行星带。

维多利亚-你好。我是剑桥的维多利亚。当你谈到银河系的大小时,你是说它像一个2D飞盘还是更像一个3D球体,比如你如何用大小来描绘银河系?

Gerry -以上就是这个问题的答案,我是不是很烦人!银河系的飞盘图很好地说明了恒星是如何分布的。这实际上是非常现实的。我们都认为这是理所当然的,但那只是因为我们被告知这就是答案。牛顿没能推导出来。他非常努力,这是他一生中最大的失败之一,就是试图弄清楚银河系的结构,所以他放弃了天文学,转而经营铸币厂。但大约100年后,一个名叫威廉·赫歇尔的人在斯劳的奇异天文中心工作,他确实制作了一幅正确的天空星图,并推断出了这个飞盘结构。所以,认为银河系是飞盘的观点其实是很现代的。但这只是恒星,黑暗的东西,一些最古老的恒星实际上分布在一个,所以,它不是一个球体,它更像一个橄榄球形状。你可以从我的口音中看出,我会用橄榄球来比喻。 So, most of the mass, the real stuff that's out there, reality, is in a big rugby ball shape. Most of the stars, the uninteresting bits that we can see and you and I are made of, that's in the big Frisbee.

克里斯-你没有说任何关于板球的事,是吗?下一个是谁?

杰夫,剑桥的杰夫。你能告诉我们更多一点盖亚实际上是如何看到这些东西的吗?是照相机吗?这5年来,它都在做什么,发现了无数的恒星?

格里:一位美国体育教练说过一句名言。他说:“发现存在的最好方法就是看。”这就是我们所做的。第一件简单的事,在任何实验中唯一的基本步骤,尤其是在天文学中,就是拍照。这就是盖亚所做的。盖亚只是一个巨大的摄像机。有两个望远镜安装在一个大的陶瓷环上。它有两个望远镜,这两个望远镜将光线射向一个巨大的摄像机,这是有史以来最大的摄像机。所以,它是由ccd制成的,就像你手机里的那种。除了你手机里的那些有一个CCD,大概有你小指指甲那么大。 The Gaia camera is about the size of a large desktop. It's over a meter long, half a meter wide. It's got a billion pixels. So, it's the biggest camera ever built. This billion pixel camera is just going to be taking pictures. Doesn't it sound easy? And beaming the information down to us for 5 or 6 years. Now, from these pictures, we can measure how bright the star is and where it is. If we keep doing that for 5 years, we'll see everything moving. And the dominant movement that we see, actually, the second most important movement that we see to be technically correct, is this parallax which is the distance to the star. So, the second thing we measure is distance to a star. The first thing we measure, the dominant thing, the most important thing is actually general relativistic light bending by the sun which is a really big effect compared to measuring the distance to a star which is a long way away.

凯尔-你好。我是剑桥的凯尔。分析一颗星需要多长时间?在大爆炸之前,宇宙中有什么,又是如何形成的?

好的,我想这是两个问题。第一个问题是盖亚将以每秒4千万颗恒星的速度测量恒星它将持续5到6年。盖亚将测量大约10亿颗恒星。每一个都要测量大约100次。因此,它将进行1000亿次测量。这是一个很大的数字。想想这个数字是很有趣的,你会想,如果我每秒拍一次,要花多长时间才能达到1000亿。你可以算出来。你会很老,当你完成的时候,你的手会很累。

Chris - Gerry,那是多少个硬盘?

Gerry -如果数据被压缩成最小格式,大约有35000张dvd。

克里斯-那么,你打算怎么储存它?

格里:嗯,我们不把它放在dvd上。

克里斯:看会很有趣。

格里-是的。现代科技真的很神奇。我办公室附近的家里有一台超级电脑,它可以处理所有的东西。而且我们已经有了拍字节级的存储。但十亿像素的摄像头实际上相当于一部高清电影,我们所做的就是让一部高清电影连续播放6年。所以当你这么说的时候,还不算太糟。我的意思是,你会有一个该死的4G电话账单,但是……

克里斯:当你在地球上有东西的时候,你是否有过想要拍几张照片的冲动?

格里-是的。

克里斯-你拍了什么?你和它自拍了吗?

Gerry -不幸的是,当这个东西那么大的时候,很难得到一个图像。所以,这些都是很无聊的测试图像,但我们知道摄像头是有用的。它也是超敏感的,所以它是一个很酷的作品。基本上,所有这些都是视频,我们要从视频中推导出所有的东西。但是我们可以,我们可以推断距离,我们可以推断速度,我们可以从颜色推断,我们可以推断化学性质。所以,我们可以设置一个时钟,然后说,宇宙的哪一部分是何时以及如何形成今天的位置的?比以前精确了几个数量级,包括寻找行星。迪迪埃通过测量速度的变化或亮度的变化来发现行星。盖亚将通过观察太阳的运动来寻找行星。

克里斯:希望在12月19日,一切都会顺利。所以,我们想向你们展示一些将会涉及到的技术。

金妮——是的。所以,我们要发射我们自己的火箭。我们现在还不打算把它送入太空,但它的工作原理和真正的火箭是一样的。

戴夫:那么,坚持我们的高科技主题,我们火箭的基础是一个标准的柠檬水瓶子。我已经预先填充了其中一种燃料用于高规格的火箭,也就是氢。所以,这个瓶子的顶部现在充满了氢气。我们正在听取前线的意见,这些意见可能会决定接下来会发生什么。氢是一种非常易燃的气体,它会燃烧,释放出巨大的能量。当你加热气体的时候,它会变大,所以,我们有一个装满气体的瓶子里面突然变大了20倍。现在我们要把盖子取下来,否则会变得很乱。在一端只有一个洞所以所有膨胀的气体,只能从一个方向出去如果我推你,你实际上把我推回去。如果你推什么东西,它就会把你推回去,不一定是那种打架的方式。如果你靠在墙上,它会把你往后推。 Otherwise, you'd fall through the wall.

金妮-或者如果你坐在轮椅上,你推了别人,你就会动。

戴夫:没错。这是牛顿提出的一个非常非常基本的物理原理。所以,如果瓶子向一个方向推出很多气体,气体就会向另一个方向推动瓶子,我们就会得到一个有趣的结果。

金妮-所以,会有一声巨响。所以,我们需要人们把他们的手指放在耳朵里。先别这么做。我会告诉你什么时候做。戴夫要打开瓶子,把水放出来。这样做会让一些空气进入因为氢气是很容易爆炸的,但是当你把它和空气混合时,它会变得更容易爆炸。所以,我们要让足够的空气进来,现在我要戴上耳罩。然后我们要把它放进火箭发射器,戴夫要点燃气体,现在每个人都把手指放在耳朵里……

(鼓掌)

戴夫:所以,这和太空火箭的工作原理完全一样。实际上燃烧的是氢和氧,和我们这里燃烧的一样。你把它液化,这样火箭里就有更多了。它膨胀,向下推动,火箭向上。即使在没有其他东西可以推动的太空中,它也能起作用。

Chris -在我们结束之前你们还有问题要问我们的小组成员吗?

保罗-我是剑桥的保罗。在之前关于行星的讨论中,有人提到有些行星我们看不见,因为天黑了,它们没有被照亮。暗物质是这么简单还是你把它说得很神秘?

Gerry -暗物质并没有那么简单。其中一些当然是由我们看不见的东西组成的,但就像我们知道的东西一样。事实上,最初的测量星系重量和推断暗物质的实验发生在100多年前,它们被故意设计成计算或推断出非常微弱的恒星和行星的数量,这些恒星和行星一定存在,但在当时的技术条件下,他们找不到。盖亚会发现很多这样的行星,我们无法通过称重看到它们。但暗物质是不同的。我们从各种各样的证据中知道,部分来自于对银河系,星系的称重,还有对宇宙的称重。从对声波及其在早期宇宙中传播方式的详细研究来看,暗物质不可能与普通物质由相同的物质构成。普通物质,我们称之为重子物质,构成我们的物质,最多只占宇宙总质量的百分之几。我们不知道这个东西是什么。最好的猜测是,它是一系列基本粒子,某种新的希格斯玻色子之类的东西。 But it might not be. It might be our theory of gravity is wrong. There's lots of possibilities going on. We just don't know what it is and that's one of the key challenges for Gaia, is to do precision weighing.

温迪-你好。我是温蒂,来自澳大利亚珀斯。你能告诉我盖亚卫星将定位在离地球多远的地方吗?一旦它在5到6年后完成任务,它会发生什么?

盖亚的关键在于,它必须保持超高的精度和稳定性。为了测量这些微小的角度,所有的东西都必须是绝对不变的。所以,它没有活动部件。它必须保持足够的寒冷和稳定整个区域的温度大约3米宽,在5年内变化小于百万分之一度。要做到这一点,就要远离地球和月球。部分原因是为了避免日食,部分原因是为了避免地球和月球变化时的重力,以免你摇晃。因此,真正精确的卫星和盖亚将是第四个这样做的卫星,它将到达地球以外150万公里的地方在那里,来自太阳,地球和月球的引力基本上或多或少地抵消了。所以,这是一个很稳定的地方。你离地球很远。你可以走到一边,避免日食,这样你就不会受到温度变化的影响。 The sun is always illuminating your solar panels. You can always see the Earth to communicate with the Earth, but it's nice and cold and stable. So, there have been 3 previous satellites, two cosmology ones and one infrared one called Herschel that have used this L2 point. Gaia will do the same, but this L2 point is not actually stable. It's only semi-stable. So, if you leave something there for long enough, it'll come and fall on your head. And these days,space agencies are responsible. So, when satellites die, they get thrown into an orbit, such that either you know what that orbit is very accurately or that orbit is so far away that you never have to worry about them coming back to Earth. So, just about 3 weeks ago, the previous occupant of the spot which was the Planck Microwave Background Satellite got thrown out of this place and is now in its own orbit around the sun. The same with Herschel and the same with WMap, an American one which was there before that and Gaia will do the same thing. So, in 5 years time, Gaia will become its own satellite of the solar system. In fact, will be with these other things, artefacts that survive longer than the Earth does. So, when we come to the end of the solar system, the Earth will be burned up to a cinder, but anyone who came to look would find Gaia out there.

克里斯:这想法令人欣慰,不是吗?最后一个问题。

米拉-你好。我是剑桥的米拉。你相信什么理论,比如大爆炸理论是如何开始的,它是如何创造万物的?

Gerry:这是一个非常有趣的问题,因为它是研究科学的基础。关键是不要相信任何事情。我做科学研究的全部方法,也是我要推荐给任何人的方法,就是永远不要说,“啊哈!我想这就是答案。我想知道这是不是真的。”关键的方法是看着某件事,然后问:“为什么会这样?”然后算出来。你应该对每件事都这么做。相当多的人根本不知道当他们打开电灯开关时会发生什么,因为他们从来没有停下来想过,“为什么会这样?”这种情况经常发生。 That's not the real answer. It doesn't happen because it's always happened. So, if you just keep asking yourself "why is it so?" then one day, we'll get to answer these questions. Now none of us knows the answer to your question. It's quite possible that you might answer that question one day. Someone of your generation is more likely to answer that question than any of us today. But you'll only do it by keep asking, "why is it so?"

Chris -请感谢我们今晚的座谈小组,Didier Queloz, Alan Tunacliffe, Gerry Gilmore。也感谢危险的戴夫和金妮史密斯在实验方面。这是剑桥科学中心的《裸体科学家》特别节目。金宝搏app最新下载我们将在新年和新年回来做更多这样的事情。我希望你玩得开心。我是克里斯·史密斯。非常感谢您的收听,祝您圣诞愉快,再见。

评论

添加注释