癌症的新想法

本周关于癌症的新研究,肿瘤是如何产生的,以及对抗癌症的新方法。菲奥娜·瓦特解释了癌症干细胞如何导致肿瘤再生,以及健康细胞如何……
四月十五日
提出的海伦尺度Kat Arney

ERBB2_mutation.jpg

其中一个突变序列构成了研究的一部分

分享

本周,我们将与Fiona Watt和Andy Futreal一起探讨癌症科学的新发展,我们将看到新的基因技术如何成为了解癌症的关键,以及了解干细胞的作用对于找到有效的治疗方法至关重要。与此同时,戴夫告诉你如何制作自己的电子黏液。

在这一集里

用老办法生孩子

干细胞精子

2006年,Karim Nayernia教授和他的团队说服小鼠胚胎干细胞成为产生精子的细胞,然后用这些精子培育出健康的小老鼠。他们最近利用成人骨髓中的干细胞,完成了类似的生物工程壮举。这些不是正常的骨髓干细胞,而是来自不同人群的间充质干细胞。受精

这些间充质干细胞是我们所知道的成人干细胞中最具延展性的一种;它们可以继续形成包括肌肉在内的许多其他身体组织。纽卡斯尔大学的研究小组在实验室培养了这些细胞,并对它们进行了处理,使它们发育成男性生殖细胞,即生殖细胞。他们发现一些部分发育的精子细胞被称为精原干细胞,这是精子产生的早期步骤之一。他们的下一步是看看能否从这些干细胞中培养出成熟的精子。

这些实验非常令人兴奋,因为它们使用的是成人干细胞。近年来,关于胚胎干细胞的新闻有很多,因为它们可以变成许多不同的组织,但使用它们存在伦理问题,特别是来自人类胚胎的干细胞。所以从成体干细胞群中找到真正具有可塑性的细胞对未来来说是非常令人兴奋的;这可能最终成为不育男性成为自己孩子父亲的一条途径。

森林象(Loxodonta cyclotis)在沼泽Mbeli Bai,努阿巴尔-恩多基国家公园,刚果

伐木对大象来说是个坏消息

世界自然保护协会(WCS)的一组科学家发表的一项研究表明,似乎伐木公司开辟森林的道路可能导致西非森林象的灭绝。他们在非洲森林中跋涉了8000多公里,对大象的数量进行了普查。大象

清点森林象并不是一件容易的事——部分原因是茂密的森林意味着你不能像它们生活在大草原上的表亲那样飞过该地区去发现和计数它们,还有一个原因是你不想太靠近大象,因为它们是出了名的具有攻击性。因此,研究小组转而寻找大象留在森林里的线索——最可靠的是它们的粪便。

令人担忧的是,他们发现大象的数量非常少,每平方公里森林中不到一头大象。更令人担忧的是,他们在靠近公路的地方发现的粪便更少。这些道路已经越来越深入森林,使木材公司能够获得宝贵的树木。他们没有在公路附近找到活象的证据,而是发现了更多被拔掉象牙的大象尸体。这表明,这些公路带来的不仅是伐木公司,还有为象牙和肉而来的大象偷猎者。

象牙贸易是被禁止的濒危物种国际贸易公约(CITES)但自2004年以来,价格翻了两番,现在每公斤超过850美元。可悲的是,对象牙的持续需求可能会导致这些令人难以置信的生物灭绝。

青少年的大脑为冒险而生

你是一个十几岁的孩子吗?嗯,众所周知,青少年经常从事冒险行为,但美国天普大学的一组心理学家认为,这种冒险行为是由于青少年大脑发育的方式。蹦极

研究人员一直在研究过去十年来对青少年大脑的研究,并得出了青少年倾向于表现出危险行为的原因。他们认为这是由于大脑中两个不同的网络以不同的速度发展。一个是社会情感系统,在青春期开始发育,将社会和情感转化为。这让青少年体验到更强烈的情绪,更容易受到同伴压力的影响。第二个是认知控制系统,它调节行为,帮助人们做出成熟的决定。但第二种情况只在青春期后期和20岁出头时才开始发展。因此,在两个相互冲突的系统中,使青少年更冒险的系统首先发展。研究人员说,这可以解释为什么青少年在同伴压力的影响下更容易冒险,而提高购买香烟和酒精的年龄可能有助于使青少年在他们的“理智系统”起作用之前更难做出鲁莽的行为。

两条弓头鲸

座头鲸是哺乳动物迁徙之王

据美国科学家称,座头鲸是打破纪录的游泳健将——它们的迁徙距离比其他任何哺乳动物都要远。他们记录了这些鲸鱼从中美洲的哥斯达黎加到南极洲的觅食地旅行了5100多英里。鲸鱼

他们使用传统的方法来收集数据,而不是复杂的卫星跟踪——通过尾巴的形状和颜色来识别单个鲸鱼。随着鲸鱼年龄的增长,它巨大的尾巴上会有小的裂痕和切口,藤壶等物种也会在它身上定居。这意味着可以通过拍照和研究尾巴的差异来区分个体。研究人员收集了哥斯达黎加和南极洲的鲸鱼的照片,并在这两个地区识别出了相同的鲸鱼。

除了鲸鱼迁徙到目前为止的事实之外,这项研究的另一个有趣的部分是,它证明了座头鲸确实会在冬天迁徙到温暖的水域。他们还利用海洋表面温度的卫星数据显示,在哥斯达黎加温度较低的年份,鲸鱼实际上会向北移动,远离南极洲,到更温暖的地区度过冬天,然后在春天一直游回觅食地。

基因会影响我们的技能吗?

我们在生活中获得的技能是遗传的这一观点被称为拉马克主义,尽管这一度被广泛接受,但现在被认为是错误的。技能和能力的发展很可能是你成长环境的结果,这是后天培养的,而不是天生的。一些基因数据表明,某些能力,比如识别“完美音高”的能力,有基因成分。这并不意味着你天生就有音乐才能,但能够比大多数人更准确地再现音乐可能会让你更有可能决定进入音乐领域,并发展你的音乐技能。

晒伤

17:54 -科学更新-烟草和制革

鲍勃和切尔西探讨了两种降低患癌症风险的方法。

科学更新-烟草和制革
切尔西·沃尔德和鲍勃·赫森

这周的裸科学家节目,我们将重点介绍两种降金宝搏app最新下载低患癌症风险的方法。我将回答一位听众关于晒黑的问题,但首先,切尔西报道了一项可以帮助吸烟者戒烟的新研究。晒伤切尔西——大多数吸烟者会告诉你,香烟配啤酒或咖啡的味道特别好。但一项新的调查显示,对一些吸烟者来说,香烟加牛奶、水果、蔬菜和水的味道尤其糟糕。杜克大学的临床心理学家乔·麦克伦说,这令人惊讶,这一发现可能会导致戒烟饮食。乔·麦克伦(杜克大学):对我来说,开发一种饮食很有意义,它可以帮助吸烟者在戒烟后不增重,也可以帮助吸烟者在戒烟前减少吸烟的乐趣,这样他们戒烟后就更容易减肥了。切尔西-麦克伦补充说,薄荷香烟似乎很少与食物发生冲突,这可能解释了为什么有些人更喜欢薄荷香烟而不是其他种类的香烟。谢谢你,切尔西。每个人都知道——或者我们希望每个人都知道——太阳下的紫外线会损害你的皮肤,可能导致早衰和癌症。但随着泳衣季节的到来,佛罗里达州盖恩斯维尔(Gainesville)的杰西卡·维加(Jessica Vega)给我们发了一封电子邮件,询问日光浴床是否是更好的解决方案。我们求助于南伊利诺伊大学医学院的皮肤科医生斯蒂芬·斯通。斯蒂芬·斯通(南伊利诺伊大学医学院):不,用晒黑床晒黑绝对不比坐在外面晒太阳好。晒黑的程度是皮肤受损的标志,无论是自然紫外线还是人工紫外线,晒黑都是受伤的标志。鲍勃-他和其他皮肤科医生希望改变人们对古铜色皮肤的文化偏好。但对于那些坚持要晒黑的人,他建议在室内使用防晒乳液,在室外使用强效防晒霜。切尔西:谢谢,鲍勃。 We'll be back next time with stories about hurricanes, droughts, and other extreme weather. Until then, I'm Chelsea Wald...Bob - And I'm Bob Hirshon, for AAAS, The Science Society. Back to you, Naked Scientists!

20:53 -干细胞在癌症中的作用

Sabina Michnowicz与Jason Wray, John Stingl和Brian Huntley就干细胞在癌症中扮演的角色进行了对话

干细胞在癌症中的作用
萨宾娜·米奇诺维奇

萨宾娜:为了开始探索干细胞在癌症中的作用,我想我应该弄清楚干细胞是什么;所以我去了威康干细胞研究中心,问了一位干细胞研究人员。小鼠胚胎干细胞杰森·雷:干细胞是一种非常神奇的细胞类型,它们有两个非常特殊的特性;第一个是自我更新,即复制相同的自身的能力,第二个定义干细胞的特性是分化成更专门的细胞类型的能力。我们把干细胞分成两类:胚胎干细胞,它有能力制造任何类型的组织,以及更特化的干细胞,我们称之为成体干细胞,它仅限于一种特定类型的组织,比如脑组织、皮肤组织等等。Sabina——我要去见剑桥大学病理科的乳腺癌专家John Stingl,问他什么是癌症以及干细胞是如何参与的。约翰·斯廷格:实际上,我们认为癌症是一种干细胞疾病。干细胞通常参与器官的形成,而癌症就是器官的形成出了问题。癌症是一种需要多种基因突变才能产生肿瘤的疾病。例如,你不会因为一个突变就得了肿瘤,因为如果是这样的话,我们都会死。我们发现我们需要5-7个突变。细胞发生突变的概率实际上非常低,只有百万分之一,就像试图中彩票一样。然而,如果你有一个细胞有能力产生很多子细胞,比如干细胞,如果你能使一个干细胞发生突变,那么这个干细胞就会产生一百万个子细胞,现在你有一百万个细胞已经有了一个基因突变。其中一个细胞发生另一个突变的概率实际上是相当高的,然后发生突变的细胞会产生一百万个子细胞其中一个会发生突变,以此类推。 That's how you can acquire five mutations.Sabina - A lot of research is being conducted to look at how stem cells work and what their role in cancer is. Brian Huntley is an expert in stem cell self renewal and he's working with leukaemia at the Cambridge Institute for Medical Research. I asked him how current research is directed by a need for cancer treatment.Brian Huntley: Treatment of malignant disease is still very ineffective and most patients have relapse and progressional disease, many still die from malignant disorders. However when you initially have a tumour, regardless of the tumour type and regardless of the therapy; whether that be chemotherapy, radiotherapy or some of the newer immunotherapies, there is usually a reduction in the size of the tumour mass. Sometimes it's very dramatic and sometimes it actually disappears. However we know that the vast majority of patients have re-growth of that tumour, either in the same place of what's known as a metastasis, growth in another place. That would suggest, following on from the cancer stem cell hypothesis, that we are killing the cells that form the bulk of the tumour, but are not able to re-grow it, whilst we are sparing the cancer stem cells. We would ideally want to target the critical cells which cause the propagation and the re-growth of the tumour. We need to know more about these cancer stem cells and how they differ from normal stem cells, and we need to be specifically targeting them to show improvements in cancer therapy.

前列腺癌细胞的电子显微镜成像和人工着色

25:08 -癌症和干细胞

菲奥娜·瓦特解释了干细胞是如何在癌症生长中扮演重要角色的,并且可能是找到新疗法的关键。

癌症和干细胞
与剑桥大学Fiona Watt教授合作

你的研究是关于癌症干细胞和干细胞生物学。回到最基本的问题,你如何定义癌症?前列腺癌细胞菲奥娜-这是一种疾病,你身体某一部分的细胞开始以不受控制的方式生长。有时这会导致肿块的形成,比如在你的乳房。但如果你的血液中有癌症,癌细胞会在你的身体周围流动,当然,危险是细胞开始扩散到身体的其他部位。Kat -我们在节目中听到了关于癌症干细胞的想法,这个想法出现多久了?菲奥娜:自从人们开始研究癌症细胞以来,这个想法已经存在了将近一百年。即使在那时,人们在显微镜下也能看到肿瘤中并非所有的细胞都是相同的。这个想法是,肿瘤中的一些细胞本质上是无害的,而另一些细胞,干细胞为肿瘤的生长提供动力,并确保无论你做什么试图摆脱癌症,癌症最终都会重新生长。到目前为止,我们在哪种癌症中发现了干细胞?似乎一直都有关于它的新报道。菲奥娜:我认为对肿瘤中干细胞的第一次也是最令人信服的鉴定是对白血病的研究,也就是血癌。有非常令人兴奋的报道称在乳腺癌,结肠癌和其他类型的肿瘤中发现了干细胞,比如影响口腔和食道的鳞状细胞癌。似乎几乎每周都有证据表明另一种类型的癌症中存在干细胞群。Kat - These discoveries have quite important implications for how we're treating cancer, what can we do with this knowledge now to take it forward?Fiona - You're right that it's very important, what we need to do is now design treatments which will target stem cells rather than the bulk of the tumour. For example, many current treatments for cancer are based on the idea that these are the cells that are growing very fast, however it might be that the stem cells are actually quite sluggish and so you're not doing any good just getting rid of the fast growing cells. Our idea is that we might be able to develop treatments which are more specific and are probably gentler for the rest of your body, they're not going to wipe out all of the normal cells which happen to be growing fast. That's the hope, and that's why people are really excited about stem cells now.Kat - So tell us a bit more about what's actually going on in your lab, you work on skin and the cells found in skin. What's new there?Fiona - My lab works on skin cancers and there are two main areas that we're interested in. One is trying to find out how different kinds of cells in the skin contribute to cancer; so we ant to identify the stem cells that drive the cancer. We're also very interested in bystander cells that seem innocuous, they might not be dividing themselves but we've found out they can actually be communicating with the stem cells and giving them encouragement to grow or else potentially holding them in check. This whole issue of what are different kinds of cells doing in a tumour is very interesting to us. The other thing we're working on is why it is that you get different kinds of tumour? In skin, you've got the outer covering of the skin, you've got sweat glands, hair follicles and so on... Different types of skin tumours are sort of caricatures of the normal differentiation that's going on. We'd like to understand how that works too.Kat - There are two main divisions of skin cancer, there's non-melanoma, and melanoma. What's the real difference between those two?Fiona - The difference is that the two types of cancer affect different cell types. Melanoma is a disease of the pigment cells of the skin called melanocytes. Non melanoma effects the cells that my lab works on, which are called keratinocytes. Kat - So how are the discoveries that you're making going to feed into cancer treatments in the future?Fiona - We have very good links with a lot of the clinical departments at Addenbrookes hospital. So what we do is we look at real tumours from real people, come up with ways to try to identify the stem cells, and then test the ideas that these are going to fire tumour development. Then we want to go back to our clinical colleagues and say "can you think of new treatments based around what we now know about the stem cells in the tumours?"Kat - So it's being a bit smarter about drug development, finding the targets and then finding the treatments?Fiona - Absolutely, but it's a slow process. You're really looking at probably ten years from getting a good proof of principle to having something which would benefit a patient in the clinic.

DNA电泳

31:49 -解码癌症基因组

Andrew Futreal博士告诉我们如何识别肿瘤中的缺陷基因,以及如何将这些基因用于靶向治疗。

破解癌症基因组
与剑桥大学威康基金会桑格研究所的安德鲁·富特尔博士合作

安德鲁:我们开始做的是试图了解在所有个体的基因组中出现的一组特定的基因,称为激酶,在疾病(癌症)的进展中起什么作用。这些细胞非常有趣,因为它们控制着细胞中的大部分分子过程。它们就像分子开关,开启和关闭物质。癌细胞是那些在不应该生长的时候生长,在不应该生长的地方生长以及不应该生长的方式几乎所有的这些过程都有一个激酶参与到控制这个过程的途径中。我们很想知道哪些基因可以作为药物靶点。我们还从过去20年的研究中了解到,如果你观察已知的突变基因,蛋白质激酶比目前任何其他基因家族出现的频率都要高。DNA凯特-所以他们才是真正的坏人?目前看来,他们似乎是我们最了解的坏人。在人类基因组中存在的两万多个基因中,决定研究这些基因的关键,是我们知道如何制造药物的一个基因家族。有几个令人吃惊的例子,通过突变的蛋白激酶来了解肿瘤的遗传学,并开发出一种对患者具有高水平疗效的小分子。所以我们想要了解癌症的基因,并建立一个家庭,如果我们发现了一些东西,就会有更短的途径转化为患者的利益。凯特:你已经研究了200种癌症的500个基因。你如何从这么多基因中获取这么多信息呢?安德鲁:我们使用了几年后将被称为“石器时代”的技术,与我们用于人类基因组测序的技术相同;叫做毛细管基因测序。在这500个基因中,我们观察了所有编码它们的比特,用聚合酶链反应从这500个基因的所有200个样本中扩增它们,每个样本大约有10,000个片段,并从两端对它们进行测序。凯特-那是很多工作!你怎么处理这么多信息? Presumably you have incredible computers to process it all.Andrew - Yes, we have an excellent group of 14 people in the cancer genome project who are bioinformatitians. They are a brilliant group who organise the data and give it to us in terms we can understand. They actually allow us to find a single experiment amongst the millions that have been done, which is very important. It's collaboration between lab scientists, computer scientists and the people who integrate the information between the two.Kat - So what were you expecting to find?Andrew - Well, from the work that we had done earlier we found a frequently mutated Kinase called B-raf in the tumor type called melanoma. This particular Kinase is mutated in about 60% to 70% of this lethal disease. We were hoping to find the same sort of pattern when we look at Kinases across a broader set of cancers. If 60% of a gene is mutated in a tumour it would make a good drug target, if you can make a molecule to turn that gene off.So we when we started looking at these 200 cancers we quickly began to understand that this particular example looks like the exception rather than the rule. The rule looks like a more widely distributed set of mutations across a larger number of genes, so we found about 1000 mutations in 200 samples, and we believe about 100 of those are driving cancers in that group of 200.Kat - So this is more than you expected?Andrew - It's quite a bit more than I would have expected. We hoped it would be lots of spikes rather than this rumble of noise, because it's more tractable to deal with spikes in terms of therapeutic development.Kat - So do you think that means you've potentially more targets to have a go at?Andrew - I think that's exactly right. What it does is it opens up a window into understanding just how complex the disease is and that's a daunting prospective. I think what it also does is allow you to begin to integrate this information into understanding what processes, pathways and signalling circuitry is turned on or off in particular cancers, it may give you the opportunity to not only go after the gene itself but also the pathway.Cancer is a complex disease we can't get away from that so we're going to get in there, roll up our sleeves and get to grips with the ugly reality of it.Kat - So you've looked at Kinases, this particular group of signalling molecules. Are there any other molecules or family of molecules that are next on your hit list?Andrew - We started a study running towards the end of the Kinase study looking at another group of about 4000 genes. We're also going to use a larger number of tumours, about 100 cancers per set. This is comprised of essentially any gene family where there is already one member known to be mutated in cancer, promoting the idea that they may be clustered by family or by function. For example we know that DNA repair is not working particularly well in a lot of cancers. This would involve things like phosphatase, which turns things back off after Kinases turn them on, or other gene families that are involved in signalling pro-growth or pro-apoptosis cell growth division. These are all the usual suspects or at least as good as we can come up with on that list at the time.Kat - so that's going to keep you busy for a while!Andrew - Yes, sadly, I don't think we'll be working our way out of a job anytime soon.

鲸鱼是怎么喝海水的?

并非所有的海洋哺乳动物,如鲸鱼、海豚、海豹和海象,实际上都喝海水,这就引出了一个问题:它们的水是从哪里来的?我们认为这些哺乳动物从它们吃的食物中获取非咸水,它们能够从它们吃的鱼中提取非咸水。它们的肾脏也有其他适应性。我们不能喝海水,因为我们的肾脏无法承受那么多的盐。鲸鱼和海豚有特殊的肾脏,可以应对如此高的盐浓度。

皮肤癌现在很常见吗?

非黑色素瘤癌症(不影响黑色素细胞或皮肤色素细胞的皮肤癌)是迄今为止西方世界最常见的癌症。这主要是因为皮肤是保护你不受环境影响的屏障。暴露在阳光下,如果不加控制,可能会破坏你皮肤中的DNA,导致癌症。其他可能导致癌症的损害包括接触有害化学物质。黑色素瘤(影响黑色素细胞或皮肤色素细胞的皮肤癌)的发病率在过去几十年里几乎增加了两倍,尤其是在年轻人中。这可能是因为人们在阳光下度假,使用日光浴床,在短时间内过度暴露在辐射中。

日光浴浴床会让人更容易得皮肤癌吗?

是的。即使是健康的饮食也不太可能以这种方式保护你的皮肤免受强烈的紫外线辐射。

电动泥

45:09 -制作你自己的电子黏液

厨房科学:黏液行为怪异……

制作你自己的电动黏液
戴夫·安塞尔,《裸体科学家金宝搏app最新下载

我们实验的第二部分是制作电黏液。

第一部分,包括如何设置实验在这里……

评论

添加注释