COVID在你的基因中:风险因素

我们的基因是否控制着我们对COVID的反应?答案是肯定的……
2021年4月14日
提出的菲尔·桑塞姆

口罩

戴口罩的妇女。

分享

我们的基因是否控制着我们对COVID的反应?自疫情开始以来,这个问题一直困扰着世界。现在我们有了答案——是肯定的。在本期节目中,遗传学家内森·皮尔森揭开了使你更容易感染冠状病毒的特定DNA片段,以及可能使你病情加重的片段....

在这一集里

迪拜的夜间天际线,以哈利法塔为特色。

00:32 - COVID-19的人类基因结构

一项新的研究结合了数千名遗传学家的工作,确定了使COVID恶化的基因……

COVID-19的人类遗传结构
Nathan Pearon, 2019冠状病毒病宿主遗传学倡议

自3月份以来,我们一直在讨论COVID-19在不同人之间的差异,这取决于他们的基因。一开始,证据并不完整。看看我们已经走了多远:最近的一项研究结合了几千名遗传学家的工作,使用了来自世界各地数百万人的DNA,确定了哪些常见的基因变异正在伤害我们。这项研究还没有经过同行评审,但这是一个很大的合作,我们将用整个项目的时间来了解他们的发现。菲尔·桑索姆采访了来自COVID-19宿主遗传学倡议的遗传学家内森·皮尔森……

我们自己的DNA在很多其他健康问题上都很重要,包括传染病。所以我们有很多例子表明人类基因变异决定了谁会受到某种感染,也许还决定了感染的严重程度,等等。所以我们有一种预感,就像其他传染病一样,这种疾病可能会有类似的结果。考虑到这是我们的专长,这是我们的职责范围,我们能和其他人一起带来什么?从病毒学家自己,到公共卫生科学家,到研究社会各个层面和我们对它的反应的人——我们能带来什么来理解我们的反应是如何变化的,也许部分是由我们的基因拼写,DNA决定的?

菲尔:那你有没有预感到基因会起到多大的作用?

内森:就我个人而言,我并没有强烈的预感。我认为,那些在冠状病毒或一般病毒方面更专业的人,在我们对它们的反应中,可能会在这方面有更强或更弱的预感。但对我来说,这是一个悬而未决的问题。我想我们的很多同事都有类似的想法:我们不会把所有的筹码都放在董事会的那一部分,但我们可能会有一些话要说。我给你们举个例子。在此之前,研究得更好的一种折磨人类的病毒是艾滋病毒。例如,我们知道,人类基因组中几个部分的遗传变异强烈地决定了谁会感染艾滋病毒,并随着时间的推移控制着病毒的载量……它是一种非常不同的病毒,所以我们不能从艾滋病毒中推断太多因为它留在我们体内,它是一种逆转录病毒;但我们知道,除了hiv - 1、hiv - 2等病毒本身的变异外,它还发挥了作用。

菲尔-对,那你在看什么呢?因为你不能拿一个人来说,“我要改变你DNA的这一部分,然后给你病毒,看看会发生什么。”你得到的是一组模糊的数据。

Nathan -对。嗯,在某种意义上是模糊的,但现在也相当全面了。我们很幸运能活在……在这次大流行期间,我们很幸运,因为我们已经研究了很多人的DNA。有一件事我们不会做,至少现在不会在人体内做——我们可能会在实验室细胞中做——但我们不会用DNA来做那样的实验。我们不会对人的DNA这么做。更确切地说,我们是在观察地球上所有人类的DNA的自然实验,看看我们是否能发现那些有特定基因拼写的人的模式。也就是说,如果你观察他们染色体上的点,它们是一种拼写方式,而另一个人的染色体副本的拼写方式不同。我们想看看能否在很多人身上发现这种模式——幸运的是,我们现在可以看到很多人,因为我们已经研究了很多基因组——看看是否有什么东西突然出现,就像“啊哈”的模式一样,暗示着什么。

菲尔:这是遗传学的一种标准技术,不是吗?我说这是一项“全基因组关联研究”,对吗?

内森-你打了那个首字母缩略词。在我们的领域里他们称之为GWAS:全基因组关联研究。很重要的一点是,现在我们要把它分成几个不同的研究,因为我们可以看到非常不同的基因拼写。我们今天讨论最多的是比较常见的拼写。也就是说,如果你观察我们人类染色体的许多拷贝,你会发现它们中的许多在这里被拼写为C,而在相同的地方,许多其他的拷贝被拼写为T,所以C和T的拼写在我们中间都是相当普遍的。现在也有一些非常罕见的拼写。这些非常罕见的拼写可能对我们的健康有很大影响,但从统计学上讲,它们很难理解;没有足够的人能从统计上回答这个问题。相反,我们将讨论常见的。我们可以在很多人身上看到这些常见的拼写,然后我们就可以知道,如果他们接触了病毒,哪些人生病了,哪些人保持了健康。 If they did get sick, did they get severely ill? id they end up in the hospital? Did they end up on a ventilator? Did they die? And when we look at enough people with these common genetic spellings, we can do what we're talking about, which is a genome-wide association study. And we end up with actually a very beautiful picture. We end up with these graphical pictures of our genomes that we call... in kind of a Yank-centric word, we call them Manhattan plots. But what they are, they're plots of our chromosomes. So you basically stretch out each of our long strings of DNA that we call a chromosome, we lay them out end to end, and we look at these common spellings in many people and say, "where do the spellings that a person carries tend to correlate most strongly with the outcome that interests us?" If we're lucky then we get a plot that looks a little bit like a city skyline, where much of it is just pavement, but then you occasionally have this very strong spike that's a very tall kind of building. We call them peaks.

你知道为什么他们叫它曼哈顿阴谋了吧。我猜你有一个感兴趣的领域,看起来像你的帝国大厦,另一个看起来像你的克莱斯勒大厦,或者类似的东西。

Nathan -是的,我觉得这个名字更适合20世纪20年代的曼哈顿,那时只有帝国大厦!曼哈顿现在看起来有点混乱。也许今天更容易想到的是迪拜这样的城市。

菲尔:平,平,平;还有一些非常非常大的钉子?

内森:对,没错。在这一点上,我们有了看起来像迪拜塔的东西。对于COVID-19,真正高的尖峰在我们第三条染色体的短臂上,3号染色体。当我们扫描时,我们在一个非常有趣但又神秘的地方看到了这个巨大的尖峰。

3号染色体,我想我代表了大多数人的观点我没有把它和身体的任何特定部位联系起来;你知道,这不是性染色体。那么到底是怎么回事,为什么这么多人都有某种产生如此巨大差异的基因?

内森:这是个好问题。因此,当我们放大并观察“地面”时,实际的字母看起来像染色体3上的这个刺突,我们发现它位于基因的内含子中。让我来分析一下。每个基因基本上都是一个配方,通常用于身体制造蛋白质。配方中有一些成分,我们称之为外显子,也就是身体读出的地方,“好吧,我们要在这里把两个鸡蛋和一杯面粉混合在一起,”但在基因中也有一些伴随的文字,叫做内含子。如果你想到一个食谱的类比,它们有点像,你如何将你正在制作的食谱的这一部分与下一部分结合在一起?所以内含子里面没有任何成分,它们有点像辅助文本。坦率地说,对大多数遗传学家来说,它们不那么有趣;它们更难解释。我应该说,3号染色体上的这个特殊基因拼写的地方似乎并没有直接影响我们对病毒的反应。 We have no reason from past studies, or even inklings from this study, to think that this gene matters. But rather, it sits between several other genes that really, really look like very intriguing candidates for how our bodies respond to viruses in particular.

菲尔:这太奇怪了!你说它只是一些附带的味道,甚至不是我们病毒反应的一部分;那么,这到底有什么大不了的呢?

Nathan -这是个好问题!事实上,事实经常是这样的无论我们研究什么疾病,曼哈顿图上的峰值实际上并没有改变蛋白质的成分表。相反,它可能会改变我们的细胞制造配方的方式和时间。这里可能发生的是,在某些细胞中,它可能像书签,或者页面上的狗耳朵,标记了我们基因组的这一部分,以便在某些细胞中被读取,这些细胞对某些人的病毒有不同的反应。现在让我把它分解一下。在这个峰的一侧有一个非常有趣的基因叫做SLC6A20;再一次,一个不稳定的名字,但它制造一种蛋白质,控制离子流入和流出特定的细胞。这些SLC蛋白在很多很多不同的疾病中都很重要。这个对于某些类型的病毒反应来说是很有趣的,在某些条件下,它也会在一些肺组织中表达。这很有趣。 But equally intriguing, and this is where it gets really mysterious: on the other side of the peak, there are another set of genes that in my book are classic, textbook viral response genes to think about, and they're called chemokine receptors. And we have several of them here. One of them incidentally is already really famous, and that is CCR5. We mentioned other viruses before such as HIV; CCR5 makes a protein that strongly shapes who is vulnerable to getting HIV or not. We don't think that there's a direct connection here, I should say that at the start. Instead we think it might be one of these other chemokine receptors, 1, 3, 9, et cetera, and maybe in the other gene on the other side... that spellings at one or more of those genes may shape which of these proteins get read when, in a way that makes some people significantly more susceptible to the virus than others. To figure out whether that's the case, whether we're right about that, we need to do follow-up experiments in cells in the lab. We're going to put those spellings into cells in a dish, and we're going to, in a simple way, model exposing that dish to the virus. We'll do experiments like that to try to figure out which, if any of these genes, if turned up or down, makes something happened in the dish that looks like what we see happening in people resisting the virus or getting it. And it's important to set expectations here for what we may find, because we can have effects that we find that are very significant - meaning that they robustly show up when we look, if we ran the study again we would find the same Burj Dubai - but the effect, even though significant, is actually quite modest in size. It's a significant effect, but not a strong effect. Let me put that in terms that many of us may find more familiar. So if we looked at weather records over the history of say the UK, where you've had weather observatories for hundreds of years, we would find that it's significantly less likely to rain on a given day in the UK in May or June than it is in April. But as anybody who grew up in Britain knows, it can rain any day, and if you really want to know if it's going to rain today you don't look back and say, "aha, today's a day in June, therefore we're going to have sunny weather!" Instead you look at the local conditions. Those are going to much more strongly shape whether you should pack an anorak. And the same way here: these effects that we're seeing in people's genomes are very significant in study after study, in people around the world, but anybody with any spellings can get the virus and get it badly. I don't say that just to cover my butt; I say it because that's the reality. These are actually very modest effects. Your spellings at this huge peak shape your risk of COVID-19 no more than about twofold over anybody else or less than anybody else. What we're learning here instead is where we can put our efforts most usefully in science to understand the virus; maybe think about developing therapies by knowing what proteins are involved in us; maybe think about fine tuning vaccines, maybe thinking about other questions. They're not for understanding individual risk yet.

菲尔:你为什么不帮我把这个问题提升到个人层面呢?因为你告诉我你发现了这种‘危险DNA’,而且你确定它是危险DNA,但你告诉我它实际上并没有那么危险。那么有多少人有这种DNA,如果他们有这种DNA,他们的风险有多大?

Nathan -好的。几乎每个人都有3号染色体的这一部分,分两份。不同的人对这些副本有不同的拼写。高风险的拷贝……总的来说,在我们的3号染色体中,大约有1 / 14的人有这种高风险拼写。它们在世界各地或多或少都很常见;它们在南亚最为常见。所以最近有南亚血统的英国人更有可能拥有至少一个风险副本,但任何人都可以拥有一两个风险副本或一两个有用的副本。第二点:风险拷贝可能对COVID-19有一定风险,但它也可能对其他疾病有帮助。我们在基因组中经常看到这种情况,一种疾病的“危险版本”变成了另一种疾病的有益版本。 I can tell you for CCR5, for example: people who have the resistant version, so they don't catch HIV easily, they actually - it looks like - get West Nile virus more easily than other people do. So nobody's off scot-free, and also nobody here is doomed from this.

菲尔:我注意到你还没有回答这个问题!因为我还是想知道…你给了我所有这些警告,这些显然是非常重要的,但我脑子里的一个小问题是:如果我有这个拼写,也许我甚至有两个副本,我知道我不应该依赖它,我知道还有很多其他因素,但风险有多大?

Nathan -哦,好吧。所以如果你在3号染色体上有两个这种特殊拼写的副本,在其他条件相同的情况下-这是一个很大的假设-你的风险大约是其他人的两倍多,大约是其他人的两倍。现在请记住我说的"其他条件都一样"除了病毒本身,我们还不知道SARS-CoV-2的其他因素。我们知道暴露很重要;所以要感染它,你真的必须暴露,如果你没有暴露,你就不会感染SARS-CoV-2。总的来说,如果你有这些拼写,你感染它的可能性大约是两倍,但如果你在基因组的其他地方或其他几个地方有其他一些尚未发现的赋予抗性的拼写呢?这可能会使你的风险降至平均水平。或者,如果你的另一个基因,你基因组的另一部分,有一个非常罕见的、未经研究的拼写,这可能会让你面临严重的风险,那该怎么办?这是一个很好的例子,进一步的因素,甚至在你的基因组中,会影响你实际感染病毒的风险。

菲尔-这意味着感染这种病毒或者患上严重疾病的几率要高两倍?

Nathan -差不多一样。所以你刚刚梳理出了另一个我们的研究能够解决的好问题,因为我们实际上研究了两个问题。我们看谁接住了它;这组基因很重要。我们还研究了谁…如果你感染了,你会进医院吗?你有严重的症状吗?你经常走下坡路吗?有一些基因在后一个问题上表现得更明显。

菲尔-哦,好的。所以我们要回到迪拜的天际线图,我们要从哈利法塔——我猜是迪拜塔,它以前被称为迪拜塔——转移到你发现的一些较小的建筑上?

内森:没错。因此,这就是迪拜的情节将变得更加复杂的地方。当我们观察我们的基因组时,我们看到了一个非常大的峰,在染色体3上的哈利法塔。这是最让我们印象深刻的,我们惊叹不已。但当我们观察其他染色体时,我们在其他染色体上看到同样引人注目但更小,更短的建筑,山峰。这些染色体包括9号,12号和21号染色体,我们会讨论这些染色体,然后还有一些更小的染色体,当你降到像城市街区和建筑物那样的水平时。但这些是其他非常突出的山峰。现在,9号染色体上的这个基因实际上是我们大多数人都听说过的基因,它是ABO基因:我们的不同版本决定了我们的血型。现在事实证明,O型血的人如果接触到COVID-19,他们看起来比其他人更能抵抗COVID-19。你的血型似乎并不能决定你的病情有多严重。 By contrast, your spellings on chromosome 3 also shape how strongly sick you get; and the other peaks we want to talk about, so on chromosome 12 and chromosome 21, they also appear to shape how strongly sick you get, and in some cases shape it more strongly perhaps than other parts of our genomes. Those peaks on 12 and 21 also fall near very intriguing genes, that if you asked a virologist, they would likely say, "aha, that makes some sense to me that those genes matter". On chromosome 12 we have a cluster of genes called OAS1, OAS2, and OAS3. These genes make proteins that help our bodies break down double-stranded RNA. A virus like SARS-CoV-2 - its genome is made of RNA, so when it needs to copy itself, it actually makes direct copies of that RNA. And when you make a direct copy, during the time you're copying it, you end up with double-stranded RNA. So these genes that we have called OAS1, 2, and 3, they help our bodies spot this kind of viral RNA; this kind of snapshot, "aha, virus within us is reproducing. Stop it." So a really cool finding on chromosome 12. On chromosome 21, the spellings that matter, the peak that matters in our plot, they fall near a gene called IFNAR2. And again, that kind of robot-name-sounding gene, it makes a protein that's an interferon receptors. So interferons are these proteins that our bodies make to interfere with microbial infection. They help our immune systems go to the rescue and fight germs. So it's not surprising to see our spellings near a gene like IFNAR2 affect how we respond to a particular germ. Now why this particular interferon receptor and not another? Why this particular virus, and maybe not every virus? Those are the open questions that we need to answer through follow up work. And that may take months to decades to figure that out. But those are really cool, intriguing findings that shape our responses. And importantly, those shape the severity response. So IFNAR2 in particular: our spellings there don't appear to really affect much who gets the virus; rather they affect who gets really sick if they got it.

菲尔:真有意思。我们能再看一遍12和21吗?9号染色体有ABO血型基因;12和21有什么?你能给我简单概括一下吗?

Nathan -好的,12号,刺突是在帮助我们身体分解病毒双链RNA的基因附近。

菲尔:21岁?

内森- 21号,这个刺突就在一个帮助我们身体调节干扰素反应的基因附近。这些干扰素是我们的身体用来对抗细菌的分子,在21号染色体上有一个基因是这些干扰素的受体,并帮助决定它们是否被激活或以特定的方式工作。

菲尔-所以这两个可能都是免疫反应的重要组成部分,这也许可以解释为什么它们会影响你是患上严重的还是轻微的COVID?

内森:完全正确。这些是我们免疫反应的核心。现在值得注意的是,我们的免疫系统在基因上也非常复杂。有很多很多基因参与免疫反应。随便朝基因组扔个飞镖,你就会在附近找到一个免疫相关基因。但在这里,我们发现了在很强的免疫反应基因群附近的刺突,我想病毒学家会说,“啊哈,这些真的很有趣。”相比之下,有一些我们非常了解的免疫相关基因还没有出现。所以我想,如果你在一年前问我们领域的任何人,“哪个人类基因最有可能是相关的?”很多人可能会说ACE2。

事实上,我们做了一个关于这个基因的节目。

Nathan -好的。很好。所以你和你的听众可能已经知道这个基因了。首先,ACE2产生的蛋白质对我们调节血压至关重要。它恰好是SARS-CoV-2和其他冠状病毒用它们著名的刺突蛋白以某种“钥匙遇见锁”的方式锁定的同一种蛋白质,也就是说,“让我们进入细胞”。到目前为止,我们已经观察了很多人在ACE2中相当常见的拼写,但它并没有成为我们的强项之一,拼写决定了谁会感染病毒。这并不意味着它不重要;ACE2中非常罕见的拼写可能很重要,有一些研究正在对此进行研究。另一组尚未显示出强烈相关性的基因是6号染色体上HLA区域的基因。这些基因是出了名的多样化。 They're mindbogglingly diverse. And that makes it really tough statistically to get a handle on what goes on. They figure a lot in a lot of how we vary immune-wise. So HLA is kind of a 'stay tuned' question. That hunch may hinge on whether COVID-19 is partly an autoimmune-like disease, where our tissues may attack themselves too much after getting infected. So those are some examples, though, of where our own immune biology is complex enough, and yet partly understood enough, that geneticists like me might've gone in with a hunch - and been wrong.

菲尔-内森,让我们把你在迪拜天际线上的所有建筑加在一起。你有3号染色体哈利法塔;还有9、12、21号楼,这些都是摩天大楼,达到了那个高度,但却没有达到;你有一堆较小的建筑。综上所述,你认为你解释了为什么不同的人感染COVID的方式不同?

内森:还很少。你会得到一个很好的问题,那就是我们这个领域的人如何从一个非常直率、模糊的见解……比如,在3号染色体上有拼写的人患严重COVID-19的可能性是其他人的两倍。但我们知道其他因素——暴露、我们的基因组和环境——也很重要。病毒的种类很重要,对吧?是B117还是别的菌株?把这些综合起来,最终对一个人进行预测:这就是我们在医疗保健领域想要的,但这真的是一个遥远的目标,即使是在最好的情况下。用一个非常直白的模型来说,你知道我们在17世纪通过望远镜拍摄的第一张像火星或木星这样的行星的照片……就像伽利略发现了木星的一些卫星,对吧?又过了100年左右才有人发现了木星上的大红斑。 And then much, much later we can go in with a fine, really good imaging satellite, fly to Jupiter, and get these gorgeous images of all the cloudscape there. We're much closer to Galileo looking at a far off planet right now. And it may not take centuries to get us to that fine picture of SARS-CoV-2 or of other diseases, but it will likely take years at this point to be able to predict it with that kind of resolution of precision that we get with the image we get of a picture of Jupiter today.

菲尔:所以你不认为这是个好主意,例如,用你在曼哈顿地块上发现的所有峰值做一个简单的基因测试——我们一直称之为迪拜天际线——让人们接受它,如果他们有所有危险的拼写,你说,“好吧,你先接种疫苗”?

内森-我觉得我们还不能做出这样的判断。我想仔细解释一下,因为我们知道还有很多其他因素更重要。我们知道,就患病风险而言,年龄的影响要大得多。我们知道性很重要;性在很大程度上是一个基因问题,所以你是有X和Y染色体还是两个X染色体。你的年龄对它的影响更大;你的记录中潜在的健康状况影响更大。在疫苗推广中,我认为我们已经优先考虑了我们首先知道的更可靠的信息因素,这是有道理的。现在,在一年之内,我们是否能从一个简单的基因模型中了解到足够的信息,即使它仍然是生硬的,说,“啊哈,这群人有这三四个基因拼写特征,我们应该让他们增加”?我们可能会到达那里。 We're not there yet, but that is exactly why we're doing this research. We're also doing it so that we know, if there are maybe multiple paths to getting severely sick... so maybe some people get severely sick through effects in the lung; maybe other people get severely sick through effects on the heart or something; those might take different routes genetically that we can start to disentangle. We can see, "ah, the people who need a ventilator because of collapse in particular tissues in the lung, they reliably tend to have this set of genetic risk factors versus other people." That might help do what doctors always want to do, which is called triage; where you take people coming in and you want to divide them into two or three sets for priority access to your care, or a given treatment, resources that are limited, et cetera. And it may also in turn help people in the pharmaceutical world, and elsewhere, who are developing therapies. So can we look at the hits from chromosome 21 or chromosome 3, can that guide us into proteins in our bodies that we should think about developing therapies around, boosting the body's ability to keep this protein working well and fighting the virus? Practically speaking, that's where insights from our work as geneticists will most quickly and reliably find use for everyday people as patients.

评论

添加注释